$n$-Jordan homomorphisms on C-algebras

نویسندگان

  • A. Bodaghi Department of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran
  • B. Shojaee Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
چکیده مقاله:

Let $nin mathbb{N}$. An additive map $h:Ato B$ between algebras $A$ and $B$ is called $n$-Jordan homomorphism if $h(a^n)=(h(a))^n$ for all $ain A$. We show that every $n$-Jordan homomorphism between commutative Banach algebras is a $n$-ring homomorphism when $n < 8$. For these cases, every involutive $n$-Jordan homomorphism between commutative C-algebras is norm continuous.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jordan * -homomorphisms on C * -algebras

In this paper, we investigate Jordan ∗-homomorphisms on C∗-algebras associated with the following functional inequality ‖f( b−a 3 ) + f( a−3c 3 ) + f( 3a+3c−b 3 )‖ ≤ ‖f(a)‖. We moreover prove the superstability and the generalized Hyers-Ulam stability of Jordan ∗homomorphisms on C∗-algebras associated with the following functional equation f( b− a 3 ) + f( a− 3c 3 ) + f( 3a+ 3c− b 3 ) = f(a).

متن کامل

Characterization of n–Jordan homomorphisms on Banach algebras

In this paper we prove that every n-Jordan homomorphis varphi:mathcal {A} longrightarrowmathcal {B} from unital Banach algebras mathcal {A} into varphi -commutative Banach algebra mathcal {B} satisfiying the condition varphi (x^2)=0 Longrightarrow varphi (x)=0, xin mathcal {A}, is an n-homomorphism. In this paper we prove that every n-Jordan homomorphism varphi:mathcal {A} longrightarrowmathcal...

متن کامل

Hyers-Ulam-Rassias stability of n-Jordan *-homomorphisms on C*-algebras

In this paper, we introduce n-jordan homomorphisms and n-jordan *-homomorphisms and Also investigate the Hyers-Ulam-Rassiasstability of n-jordan *-homomorphisms on C*-algebras.

متن کامل

Jordan ∗−homomorphisms between unital C∗−algebras

Let A,B be two unital C∗−algebras. We prove that every almost unital almost linear mapping h : A −→ B which satisfies h(3uy + 3yu) = h(3u)h(y) + h(y)h(3u) for all u ∈ U(A), all y ∈ A, and all n = 0, 1, 2, ..., is a Jordan homomorphism. Also, for a unital C∗−algebra A of real rank zero, every almost unital almost linear continuous mapping h : A −→ B is a Jordan homomorphism when h(3uy + 3yu) = h...

متن کامل

Approximate n-Lie Homomorphisms and Jordan n-Lie Homomorphisms on n-Lie Algebras

and Applied Analysis 3 Park and Rassias 59 proved the stability of homomorphisms in C∗-algebras and Lie C∗-algebras and also of derivations on C∗-algebras and Lie C∗-algebras for the Jensen-type functional equation μf ( x y 2 ) μf ( x − y 2 ) − fμx 0 1.6 for all μ ∈ T1 : {λ ∈ C; |λ| 1}. In this paper, by using the fixed-point methods, we establish the stability of n-Lie homomorphisms and Jordan...

متن کامل

hyers-ulam-rassias stability of n-jordan *-homomorphisms on c*-algebras

in this paper, we introduce n-jordan homomorphisms and n-jordan *-homomorphisms and also investigate the hyers-ulam-rassiasstability of n-jordan *-homomorphisms on c*-algebras.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 01  شماره 01

صفحات  1- 7

تاریخ انتشار 2012-03-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023